The power of BIM for structural engineering.
Improve Efficiency, Accuracy, and Coordination

Concurrent modeling for structural design, analysis, and coordinated documentation

Autodesk® Revit® Structure software improves the way structural engineers and drafters work. Revit Structure helps minimize repetitive modeling and drawing tasks as well as errors due to manual coordination between structural engineers, architects, and drafters. The software helps reduce time spent producing final construction drawings and helps increase the accuracy of documentation, improving overall project deliverables for clients.

Smoother Coordination
Because Autodesk Revit Structure uses building information modeling (BIM), every view, drawing sheet, and schedule represents the same underlying database. As project team members work on the same project, making inevitable and necessary changes to the building structure, parametric change technology in Autodesk Revit Structure automatically coordinates changes across all other representations of the project—model views, drawing sheets, schedules, sections, plans, and details. The design and documentation stay coordinated, consistent, and complete.

Bidirectional Associativity
The building model and all of its views are part of the same information system. This means changes to any part of the structure need to be made only once, maintaining consistency throughout the documentation set. For example, if the sheet scale changes, the software automatically resizes annotations and graphics. If a structural member changes, any views that include the element are coordinated and updated automatically, including name tags and other labels referring to the element properties.

Collaboration with Architects
Engineers working with architects using Autodesk® Revit® Architecture software can experience the advantages of BIM and share the same underlying building database. Creation of the structural model is faster with integrated Autodesk Revit platform tools. With interference checking between structural and architectural objects, engineers can more quickly detect coordination problems before sending drawings to the construction site.

Collaboration with Mechanical, Electrical, and Plumbing Engineers
Structural engineers working with mechanical, electrical, or plumbing engineers using AutoCAD® MEP software can improve design coordination. Autodesk Revit Structure users can export their structural model into AutoCAD MEP, where the MEP engineer can perform clash detection between pipes and structural elements. Autodesk Revit Structure can also import 3D duct and pipe objects from AutoCAD MEP into the structural model via ACIS® solids to help detect interferences visually. In addition, structural engineers who are working with MEP engineers using Autodesk® Revit® MEP software can take better advantage of building information modeling.

Building information modeling significantly improves the quality and accuracy of the information that we push downstream. Our construction documents are created directly from the Autodesk Revit Structure model. If the model is correct, then the drawings are automatically correct. As a result, we are able to spend a lot less time producing documentation and more time up front modeling the structure.

—Jim Jacobi
Principal
Walter P. Moore
Whether engineers are designing steel, cast-in-place concrete, precast concrete, masonry, or wood structures, standard modeling objects in Autodesk Revit Structure software include walls, beam systems, columns, slabs, and foundations. Additional structural objects can be created as parametric components.

Parametric Components
Using Autodesk Revit Structure, engineers can create many types of structural components, such as joist systems, beams, open web joists, trusses, and intelligent wall families. No programming language is required to use parametric components, also known as families. The family editor contains all the data to graphically represent an element in 2D and 3D at various levels of detail.

Multiuser Collaboration
Autodesk Revit Structure enables multiple team members on the same network to work together on a model, while their work stays fully coordinated. A wide range of collaboration modes provides more flexibility to better meet the project team’s workflow—from on-the-fly, simultaneous access to the shared model to formal division of the project into discrete shared units or individually managed linked models.

Design Options
With Autodesk Revit Structure, engineers can stay focused on structural engineering. The software enables users to explore design changes, develop and study several design alternatives to make key design decisions, and more easily present multiple schematic designs to clients. Each option can be substituted into the model for visualization and quantity takeoff to help team members and clients make more informed decisions.

Leading Analysis and Design Integration
Analytical models created with Autodesk Revit Structure contain information such as loads, load combinations, member sizes, and release conditions. The analytical model can be the entire building model, one wing of the building, or even a single structural frame. Engineers use selection filters with structural boundary conditions to send substructures (such as a frame, floor, or wing of the building) to their analysis software without the need to send the entire model.

The creation of the analytical model uses engineering rules to produce a consistent analytical representation of the physical structure. Engineers can override initial analytical settings and edit the analytical model before linking to structural analysis packages.

Autodesk Revit Structure can inspire structural engineers to greater engineering insight: user-defined rules help the analytical models adjust their location to the analytical projection planes of attached or adjacent structural elements. Engineers can automatically check analytical inconsistencies such as missing supports, global instabilities, or framing anomalies before sending the model to structural analysis.

The analysis programs then return the design information and dynamically update the physical model and documentation, minimizing many redundant, repetitive tasks such as modeling frames and shells in a variety of different applications.

Autodesk Revit Structure integrates with Autodesk® Robot™ Structural Analysis Professional software as well as other widely used analysis and design applications. To find out which software partners have linked their applications to Autodesk Revit Structure through the Autodesk® Revit® platform API (application programming interface), visit http://www.autodesk.com/revitstructure.

Help save time by creating physical and analytical structural models in a single application.
Deliver Comprehensive Construction Documents

Use a comprehensive set of dedicated tools to deliver structural drawings and help reduce errors due to manual coordination of design changes.

Material-specific tools help construction documents conform to industry and office standards.

For steel, features such as beam coping and automatic symbolic cutbacks as well as an extensive library of detail components, are available.

Automatic Drawing Sheet References
This functionality helps safeguard that no section, elevation, or callout references the wrong drawing or sheet and that all data and graphics, details, schedules, drawings, and sheets in the drawing set are current and coordinated.

Details
Autodesk Revit Structure allows callouts for typical details and for specific ones. Entire sheets of typical details can be created from scratch in Autodesk Revit Structure using its traditional 2D drafting tools.

Automatic Sections and Elevations
Creating sections and elevations in Autodesk Revit Structure is more simple compared to traditional methods. Because views are just a different representation of the entire building model, users get cuts faster throughout a structure. Use them at any time to work in the most appropriate view.

When the geometry gets complicated, Autodesk Revit Structure offers 3D model-based details such as 3D representation of building expansion joints, steel connections, rebar in concrete elements, and more.

For concrete structures, display options provide control over the visibility of the concrete elements. Reinforcement bars are also available for concrete elements, including columns, beams, walls, and foundations.

Automatic Drawing Sheet References
This functionality helps safeguard that no section, elevation, or callout references the wrong drawing or sheet and that all data and graphics, details, schedules, drawings, and sheets in the drawing set are current and coordinated.

Details
Autodesk Revit Structure allows callouts for typical details and for specific ones. Entire sheets of typical details can be created from scratch in Autodesk Revit Structure using its traditional 2D drafting tools.

Automatic Sections and Elevations
Creating sections and elevations in Autodesk Revit Structure is more simple compared to traditional methods. Because views are just a different representation of the entire building model, users get cuts faster throughout a structure. Use them at any time to work in the most appropriate view.

When the geometry gets complicated, Autodesk Revit Structure offers 3D model-based details such as 3D representation of building expansion joints, steel connections, rebar in concrete elements, and more.

Designers can also import DWG details from AutoCAD® software and link them into Autodesk Revit Structure, using the project browser to manage them.

Specific details come directly from the views of the model. These model-based details are completed with 2D parametric components (metal deck, concrete masonry unit, anchor bolts in footings, fasteners, welded symbols, steel connection plates, concrete rebar, and more) and annotations such as text and dimensions.

Schedules
Help save time by creating schedules on demand, and update the model and views automatically simply by making a change in a schedule. Schedule features include sorting, filtering, grouping, and counting as well as user-defined formulas.

<table>
<thead>
<tr>
<th>Structural Framing Schedule</th>
<th>Type</th>
<th>Length</th>
<th>Camber Size</th>
<th>Number of Studs</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF116</td>
<td>1" - 1"</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF120</td>
<td>1.5 - 1.25"</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF124</td>
<td>2.0 - 1.5"</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF128</td>
<td>2.5 - 2"</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF132</td>
<td>3.0 - 2.5"</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF136</td>
<td>3.5 - 3"</td>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WF140</td>
<td>4.0 - 3.5"</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engineers and project managers can use customized schedules to check the overall structural design. For example, they can schedule and review structural loads before integrating the model with analysis software. If the load value needs to be changed, it can be modified in the schedule and automatically coordinated throughout the model.
Make better decisions, earlier in the design process by more accurately visualizing and analyzing structures, before they are built.
We had been watching building information modeling for several years but were unable to find a structural design product that did what we needed. When we saw the demo of Autodesk Revit Structure, we knew that there was finally a solution.

—David Pluke
Principal and VP of Technology
Ericksen Roed & Associates, Inc.